Advanced Materials Research K-1428 (2015) and 162-17

Mechanical characterization of the PM Hydroxyapatite-based biocomposites elaborated by two-step sintering

SIMA Gabriela^{1,a*}, CINCA Ion^{2,b}, TEISANU Cristina^{1,c} and GINGU Oana^{1,d}

¹University of Craiova, Faculty of Mechanics, 107 Calea Bucuresti, 2200512, Craiova, Romania

²University Politehnica of Bucharest, 313 Spaliul Independentei, Sector 6, 060042, Bucharest, Romania

^agsima2001@yahoo.com, ^bion.cinca@mdef.pub.ro, ^ccteisanu@yahoo.com, ^doanagingu@yahoo.com

Keywords: biocomposites, nanostructures, two-step sintering, mechanical properties.

Abstract. The paper focuses on the mechanical characterization of porous biocomposites based on hydroxyapatite submicronic powders (<200 nm), respectively micronic powders particle (30-50 μ m) as matrix, reinforced by titanium hybride powders (10-25 mass%, 100-150 μ m) as foaming agent. Another foaming agent used is calcium bicarbonate powder (5-15% mass). The mixture homogenization was made in a Frisch-Pulverisette 6 type planetary mill (n=200 rpm), for 30 minutes. The green compacts were processed by unilateral cold compaction at 150 MPa. The two-step sintering technology (TSS) has been applied to the green parts, on the Nabertherm conventional furnace: at 900°C for few minutes (first step) and at 800°C for 450 minutes, respectively 600 minutes (the second step). The mechanical characteristics (compression modulus G [MPa] and ultimate compression strength σ_{UTS} [MPa]), were studied using the universal mechanical testing machine INSTRON 3382 and compared with the mechanical characterization of the human bone.